Color illustration of spacecraft above Europa.

An 2016 artist's view of the Clipper spacecraft. The design could change as the spacecraft is developed. Larger Image ›

Europa Clipper mission will conduct detailed reconnaissance of Jupiter's moon Europa to see whether the icy moon could harbor conditions suitable for life. The mission will carry a highly capable, radiation-tolerant spacecraft that will perform repeated close flybys of the icy moon from a long, looping orbit around Jupiter.

The payload of selected science instruments includes cameras and spectrometers to produce high-resolution images of Europa's surface and determine its composition. An ice penetrating radar will determine the thickness of the moon's icy shell and search for subsurface lakes similar to those beneath Antarctica. The mission also will carry a magnetometer to measure strength and direction of the moon's magnetic field, whichwill allow scientists to determine the depth and salinity of its ocean.

This is a giant step in our search for oases that could support life in our own celestial backyard. We're confident that this versatile set of science instruments would produce exciting discoveries on a much-anticipated mission.
- Curt Niebur, Europa Program Scientist

A thermal instrument will scour Europa's frozen surface in search of recent eruptions of warmer water, while additional instruments will search for evidence of water and tiny particles in the moon's thin atmosphere. NASA's Hubble Space Telescope observed water vapor above the south polar region of Europa in 2012, providing the first strong evidence of water plumes. If the plumes' existence is confirmed - and they're linked to a subsurface ocean - it will help scientists investigate the chemical makeup of Europa's potentially habitable environment while minimizing the need to drill through layers of ice.


The Europa Clipper Mission will send a spacecraft to the Jupiter system to perform repeated close flybys of the giant planet's large moon Europa to investigate its potential habitability. The spacecraft will collect information on Europa's ice shell thickness, composition and surface geomorphology. The notional science payload consists of four instruments: a Shortwave Infrared Spectrometer (SWIRS), an Ice-Penetrating Radar (IPR), a stereo Topographical Imager (TI), and an Ion and Neutral Mass Spectrometer (INMS).

Color image of Europa showing a close of view of blocky terrain on the surface.
Jupiter's moon Europa has a crust made up of blocks, which are thought to have broken apart and 'rafted' into new positions, as shown in the image on the left. These features are the best geologic evidence to date that Europa may have had a subsurface ocean at some time in its past.

The nominal Europa Clipper mission will include 45 flybys of Europa at altitudes varying from 1675 miles to 16 miles (2700 km to 25 km). In the course of performing these flybys, the mission will also fly by the Jovian moons Ganymede and Callisto, although these flybys are solely to shape the orbit and would not drive science priorities.

Science Package

The payload of selected science instruments includes cameras and spectrometers to produce high-resolution images of Europa's surface and determine its composition. An ice penetrating radar will determine the thickness of the moon's icy shell and search for subsurface lakes similar to those beneath Antarctica. The mission also will carry a magnetometer to measure strength and direction of the moon's magnetic field, whichwill allow scientists to determine the depth and salinity of its ocean.

A thermal instrument will scour Europa's frozen surface in search of recent eruptions of warmer water, while additional instruments will search for evidence of water and tiny particles in the moon's thin atmosphere. NASA's Hubble Space Telescope observed water vapor above the south polar region of Europa in 2012, providing the first strong evidence of water plumes. If the plumes' existence is confirmed - and they're linked to a subsurface ocean - it will help scientists investigate the chemical makeup of Europa's potentially habitable environment while minimizing the need to drill through layers of ice.

Last year, NASA invited researchers to submit proposals for instruments to study Europa. Thirty-three were reviewed and, of those, nine were selected for a mission that will launch in the 2020s.

"This is a giant step in our search for oases that could support life in our own celestial backyard," said Curt Niebur, Europa program scientist at NASA Headquarters in Washington. "We're confident that this versatile set of science instruments would produce exciting discoveries on a much-anticipated mission."

The NASA selectees are:

  • Plasma Instrument for Magnetic Sounding (PIMS) -- principal investigator Dr. Joseph Westlake of Johns Hopkins Applied Physics Laboratory (APL), Laurel, Maryland. This instrument works in conjunction with a magnetometer and is key to determining Europa's ice shell thickness, ocean depth, and salinity by correcting the magnetic induction signal for plasma currents around Europa.
  • Interior Characterization of Europa using Magnetometry (ICEMAG) -- principal investigator Dr. Carol Raymond of NASA's Jet Propulsion Laboratory (JPL), Pasadena, California. This magnetometer willmeasure the magnetic field near Europa and - in conjunction with the PIMS instrument - infer the location, thickness and salinity of Europa's subsurface ocean using multi-frequency electromagnetic sounding.
  • Mapping Imaging Spectrometer for Europa (MISE) -- principal investigator Dr. Diana Blaney of JPL. This instrument will probe the composition of Europa, identifying and mapping the distributions of organics, salts, acid hydrates, water ice phases, and other materials to determine the habitability of Europa's ocean.
  • Europa Imaging System (EIS) -- principal investigator Dr. Elizabeth Turtle of APL. The wide and narrow angle cameras on this instrument will map most of Europa at 50 meter (164 foot) resolution, and willprovide images of areas of Europa's surface at up to 100 times higher resolution.
  • Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) -- principal investigator Dr. Donald Blankenship of the University of Texas, Austin. This dual-frequency ice penetrating radar instrument is designed to characterize and sound Europa's icy crust from the near-surface to the ocean, revealing the hidden structure of Europa's ice shell and potential water within.
  • Europa Thermal Emission Imaging System (E-THEMIS) -- principal investigator Dr. Philip Christensen of Arizona State University, Tempe. This "heat detector" will provide high spatial resolution, multi-spectral thermal imaging of Europa to help detect active sites, such as potential vents erupting plumes of water into space.
  • MAss SPectrometer for Planetary EXploration/Europa (MASPEX) -- principal investigator Dr. Jack (Hunter) Waite of the Southwest Research Institute (SwRI), San Antonio. This instrument will determine the composition of the surface and subsurface ocean by measuring Europa's extremely tenuous atmosphere and any surface material ejected into space.
  • Ultraviolet Spectrograph/Europa (UVS) -- principal investigator Dr. Kurt Retherford of SwRI. This instrument will adopt the same technique used by the Hubble Space Telescope to detect the likely presence of water plumes erupting from Europa's surface. UVS will be able to detect small plumes and will provide valuable data about the composition and dynamics of the moon's rarefied atmosphere.
  • SUrface Dust Mass Analyzer (SUDA) -- principal investigator Dr. Sascha Kempf of the University of Colorado, Boulder. This instrument will measure the composition of small, solid particles ejected from Europa, providing the opportunity to directly sample the surface and potential plumes on low-altitude flybys.

Separate from the selectees listed above, the SPace Environmental and Composition Investigation near the Europan Surface (SPECIES) instrument has been chosen for further technology development. Led by principal investigator Dr. Mehdi Benna at NASA's Goddard Space Flight Center in Greenbelt, Maryland, this combined neutral mass spectrometer and gas chromatograph will be developed for other mission opportunities.